Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 106.617
1.
Sci Rep ; 14(1): 10566, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719873

Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.


Amoxicillin , Anti-Bacterial Agents , Light , Nanostructures , Catalysis , Anti-Bacterial Agents/chemistry , Nanostructures/chemistry , Amoxicillin/chemistry , Water Pollutants, Chemical/chemistry , Copper/chemistry , Zinc Oxide/chemistry , Silicon Dioxide/chemistry , Water Purification/methods
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732009

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Flowers , Gene Expression Regulation, Plant , Light , Plant Growth Regulators , Seasons , Plant Growth Regulators/metabolism , Flowers/metabolism , Flowers/growth & development , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Gibberellins/metabolism , Ipomoea nil/metabolism , Ipomoea nil/genetics , Transcriptome , Gene Expression Profiling , Cyclopentanes , Oxylipins
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732065

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Carotenoids , Light , Thymus Plant , Trichoderma , Volatile Organic Compounds , Thymus Plant/chemistry , Thymus Plant/metabolism , Trichoderma/metabolism , Trichoderma/growth & development , Carotenoids/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Chlorophyll/metabolism , Terpenes/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Antioxidants/metabolism , Anthocyanins/metabolism , Anthocyanins/analysis , Chlorophyll A/metabolism , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development
4.
Food Res Int ; 186: 114382, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729736

Black carrot anthocyanins have gained increasing attention as natural coloring agent, owing to their higher stability than anthocyanins from berries. The stability has been attributed to their higher degree of acylation. This study investigated the impact of acylation on the stability of individual anthocyanins during storage in light and darkness. We hypothesized that the acylated anthocyanins would be more stable than the non-acylated ones. The major five anthocyanins were fractioned by semi-preparative HPLC and stored at pH 4.5 in light and darkness to investigate how acylation affected the stability. The stability was evaluated by absorption spectroscopy and mass spectrometry (MS). Two of the anthocyanins were non-acylated; 3-xylosyl(glucosyl)galactoside and cyanidin 3-xylosylgalactoside, and three were acylated; cyanidin 3-xylosyl(sinapolyglucosyl)galacto-side, cyanidin 3-xylosyl(feruloylglu-cosyl)galactoside, and cyanidin 3-xylosyl(coumaroyl-glucosyl)galactoside. Both methods (spectroscopy and MS) showed a clear effect of acylation when stored in light, but surprisingly the two non-acylated anthocyanins, showed higher stability than the three acylated ones.


Anthocyanins , Daucus carota , Light , Anthocyanins/chemistry , Anthocyanins/analysis , Acylation , Daucus carota/chemistry , Daucus carota/radiation effects , Chromatography, High Pressure Liquid , Darkness , Food Storage/methods , Mass Spectrometry , Hydrogen-Ion Concentration
5.
J Photochem Photobiol B ; 255: 112925, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703451

Visible light triggers free radical production in alive and intact Drosophila melanogaster. We exposed fruit flies to red (613-631 nm), green (515-535 nm), and blue (455-475 nm) light while we monitored changes in unpaired electron content with an electron spin resonance spectrometer (ESR/EPR). The immediate response to light is a rapid increase in spin content lasting approximately 10 s followed by a slower, linear increase for approximately 170 s. When the light is turned off, the spin population promptly decays with a similar time course, though never fully returning to baseline. The magnitude and time course of the spin production depends on the wavelength of the light. Initially, we surmised that eumelanin might be responsible for the spin change because of its documented ability for visible light absorption and its highly stable free radical content. To explore this, we utilized different fruit fly strains with varying eumelanin content and clarified the relation of melanin types with the spin response. Our findings revealed that flies with darker cuticle have at least three-fold more unpaired electrons than flies with yellow cuticle. However, to our surprise, the increase in unpaired electron population by light was not drastically different amongst the genotypes. This suggests that light-induced free radical production may not exclusively rely on the presence of black melanin, but may instead be dependent on light effects on quinone-based cuticular polymers.


Drosophila melanogaster , Light , Melanins , Animals , Free Radicals/chemistry , Drosophila melanogaster/metabolism , Electron Spin Resonance Spectroscopy , Melanins/chemistry , Melanins/metabolism , Melanins/biosynthesis
6.
Methods Mol Biol ; 2808: 35-56, 2024.
Article En | MEDLINE | ID: mdl-38743361

Mononegaviruses are promising tools as oncolytic and transgene vectors for gene therapy and regenerative medicine. However, when mononegaviruses are used for therapeutic applications, the viral activity must be strictly controlled due to concerns about toxicity and severe side effects. With this technology, mononegavirus vectors can be grown where they are intended and can be easily removed when they are no longer needed. In particular, a photoswitch protein called Magnet (consisting of two magnet domains) is incorporated into the hinge region between the connector and methyltransferase domains of the mononegavirus polymerase protein (L protein) to disrupt the L protein functions. Blue light (470 ± 20 nm) irradiation causes the dimerization of the two magnet domains, and the L protein is restored to activity, allowing viral gene expression and virus replication. Since the magnet domains' dimerization is reversible, viral gene expression and replication cease when blue light irradiation is stopped.


Gene Expression Regulation, Viral , Virus Replication , Virus Replication/genetics , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Light , Animals , Genetic Vectors/genetics
7.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700457

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Nitriles , Pyrazoles , Pyrimidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Apoptosis/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Light , Molecular Structure , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism
8.
Luminescence ; 39(5): e4768, 2024 May.
Article En | MEDLINE | ID: mdl-38719590

In this study, we synthesize nanostructured nickel oxide (NiO) and doped cobalt (Co) by combining nickel(II) chloride hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as initial substances. We analyzed the characteristics of the product nanostructures, including their structure, optical properties, and magnetic properties, using various techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet absorption spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometers (VSM). The NiO nanoparticles doped with Co showed photocatalytic activity in degrading methylene blue (MB) dye in aqueous solutions. We calculated the degradation efficiencies by analyzing the UV-Vis absorption spectra at the dye's absorption wavelength of 664 nm. It was observed that the NiO-doped Co nanoparticles facilitated enhanced recombination and migration of active elements, which led to more effective degradation of organic dyes during photocatalysis. We also assessed the electrochemical properties of the materials using cyclic voltammetry (CV) and impedance spectroscopy in a 1 mol% NaOH solution. The NiO-modified electrode exhibited poor voltammogram performance due to insufficient contact between nanoparticles and the electrolyte solution. In contrast, the uncapped NiO's oxidation and reduction cyclic voltammograms displayed redox peaks at 0.36 and 0.30 V, respectively.


Cobalt , Electrochemistry , Electrodes , Nanocomposites , Nickel , Nanocomposites/chemistry , Nickel/chemistry , Cobalt/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Luminescence , Microscopy, Electron, Scanning , Particle Size , Magnetic Phenomena , Nanoparticles/chemistry , Light , Catalysis , Oxides/chemistry , Methylene Blue/metabolism
9.
Biotechnol J ; 19(5): e2400023, 2024 May.
Article En | MEDLINE | ID: mdl-38719589

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Anti-Bacterial Agents , Escherichia coli , Light , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Optogenetics/methods , Gene Expression Regulation, Bacterial/drug effects , Ampicillin/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Streptomycin/pharmacology , Blue Light
10.
Carbohydr Polym ; 337: 122160, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710575

Sterilisation technologies are essential to eliminate foodborne pathogens from food contact surfaces. However, most of the current sterilisation methods involve high energy and chemical consumption. In this study, a photodynamic inactivation coating featuring excellent antibacterial activity was prepared by dispersing curcumin as a plant-based photosensitiser in a chitosan solution. The coating generated abundant reactive oxygen species (ROS) after light irradiation at 420 nm, which eradicated ≥99.999 % of Escherichia coli O157:H7. It was also found that ROS damaged the cell membrane, leading to the leakage of cell contents and cell shrinkage on the basis of chitosan. In addition, the production of ROS first excited the bacterial antioxidant defence system resulting in the increase of peroxidase (POD) and superoxide dismutase (SOD). ROS levels exceed its capacity, causing damage to the defence system and further oxidative decomposition of large molecules, such as DNA and proteins, eventually leading to the death of E. coli O157:H7. We also found the curcumin/chitosan coating could effectively remove E. coli O157:H7 biofilms by oxidative of extracellular polysaccharides and proteins. All the contributors made the chitosan/curcumin coating an efficient detergent comparable with HClO.


Anti-Bacterial Agents , Biofilms , Chitosan , Curcumin , Escherichia coli O157 , Photosensitizing Agents , Reactive Oxygen Species , Chitosan/chemistry , Chitosan/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Escherichia coli O157/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Biofilms/drug effects , Food Microbiology , Light
11.
Trop Anim Health Prod ; 56(4): 146, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722408

This study was planned to evaluate the impact of dichromatic lights during incubation on the hatching and post-hatch performance of broiler chickens. A total of 500 eggs of broiler breeder (Ross 308; Age 44 weeks) were evenly divided according to a completely randomized design into 4 treatments having 5 replicates and 25 eggs each. Treatments consisted of dichromatic lights Blue + Red (BR), Green + Red (GR) and Green + Blue (GB) provided at an intensity of 250 lx for 12 h a day along with a Dark (D) environment. After hatching 200 chicks (50 from each respective light group) were divided into 4 treatments with 5 replicates each having 10 chicks. Results indicated a higher embryo index (13.12%) in the GR group on the 12th day of incubation; while an ideal hatch window was observed in GR and GB (98.18% and 96.00% hatched chicks) lighting groups. In hatching traits, higher hatchability (86.15) and hatch of fertile (93.85) percentages were observed in GR lighting followed by GB, BR and Dark treatment groups; while dead-in shell embryos were lowest in the GR group. In growth performance, higher feed intake (513.20 g) and body weight (479.20 g) were observed in the GB group followed by GR, BR and dark group; and feed conversion ratio (FCR) was better in the GR group (1.06). In welfare parameters, improved physical asymmetry (0.90 mm) and tonic immobility (54.40 s) were measured in the GR group followed by GB, BR and the dark group. It was concluded that under experimental conditions when broiler breeder eggs are provided with GR lighting during incubation, it can help to improve hatchability, growth performance and welfare traits in chicks.


Animal Husbandry , Chickens , Lighting , Animals , Chickens/growth & development , Chickens/physiology , Chick Embryo/growth & development , Animal Husbandry/methods , Random Allocation , Female , Light
12.
Invest Ophthalmol Vis Sci ; 65(5): 20, 2024 May 01.
Article En | MEDLINE | ID: mdl-38727692

Purpose: Vision-degrading myodesopsia (VDM) from vitreous floaters significantly degrades vision and impacts visual quality of life (VQOL), but the relationship to light scattering is poorly understood. This study compared in vitro measures of light scatter and transmission in surgically excised human vitreous to preoperative indexes of vitreous structure, visual function, and VQOL. Methods: Pure vitreous collected during vitrectomy from 8 patients with VDM had wide-angle straylight measurements and dark-field imaging, performed within 36 hours of vitrectomy. Preoperative VQOL assessment with VFQ-25, contrast sensitivity (CS) measurements with Freiburg acuity contrast testing, and quantitative ultrasonography were compared to light scattering and transmission in vitro. Results: All indices of vitreous echodensity in vivo correlated positively with straylight at 0.5° (R = 0.708 to 0.775, P = 0.049 and 0.024, respectively). Straylight mean scatter index correlated with echodensity (R = 0.71, P = 0.04) and VQOL (R = -0.82, P = 0.0075). Dark-field measures in vitro correlated with degraded CS in vivo (R = -0.69, P = 0.04). VQOL correlated with straylight mean scatter index (R = -0.823, P = 0.012). Conclusions: Increased vitreous echodensity in vivo is associated with more straylight scattering in vitro, validating ultrasonography as a clinical surrogate for light scattering. Contrast sensitivity in vivo is more degraded in the presence of dark-field scattering in vitro and VQOL is decreased in patients whose vitreous has increased light scattering. These findings could form the basis for the development of optical corrections for VDM or support new laser treatments, as well as novel pharmacotherapy.


Contrast Sensitivity , Light , Scattering, Radiation , Visual Acuity , Vitrectomy , Vitreous Body , Humans , Vitreous Body/diagnostic imaging , Female , Male , Middle Aged , Visual Acuity/physiology , Contrast Sensitivity/physiology , Aged , Quality of Life , Vision Disorders/physiopathology , Adult , Ultrasonography , Eye Diseases/physiopathology , Eye Diseases/diagnostic imaging
13.
Colloids Surf B Biointerfaces ; 238: 113923, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692173

The rapid advancement of photodynamic therapy (PDT) antibacterial materials has led to promising alternatives to antibiotics for treating bacterial infections. However, antibacterial drugs have poor light absorption and utilization rates, which limits their practical application. Constructing two-dimensional (2D) heterojunctions from materials with matching photophysical properties has emerged as a highly effective strategy for achieving high-efficiency photo-antibacterial performance. Here, we designed and prepared an atom co-sharing Bi/Bi4O5Br2 nanosheet heterojunction by a simple in situ reduction. This heterojunction material combines outstanding biocompatibility with excellent bactericidal efficiency, which exceeded 90 % against Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) under visible light irradiation, around nine-fold higher than that with pure Bi4O5Br2 nanosheets. The results suggest that localized surface plasmon resonance (LSPR) of shared Bi atoms on the Bi4O5Br2 nanosheets promotes light utilization and the separation and transfer of photo-generated charges, thus producing more abundant reactive oxygen species (ROS), which can partake in the PDT antibacterial effect. Our study underscores the potential utility of LSPR-enhanced Bi-based nanosheet heterojunctions for safe and efficient PDT to combat bacterial infections.


Anti-Bacterial Agents , Bismuth , Escherichia coli , Light , Nanostructures , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Nanostructures/chemistry , Bismuth/chemistry , Bismuth/pharmacology , Catalysis , Microbial Sensitivity Tests , Photochemical Processes , Reactive Oxygen Species/metabolism , Surface Plasmon Resonance , Photochemotherapy , Particle Size
14.
Sci Rep ; 14(1): 10183, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702452

The perception of halos and other night vision disturbances is a common complaint in clinical practice. Such visual disturbances must be assessed in order to fully characterize each patient's visual performance, which is particularly relevant when carrying out a range of daily tasks. Visual problems are usually assessed using achromatic stimuli, yet the stimuli encountered in daily life have very different chromaticities. Hence, it is important to assess the effect of the chromaticity of visual stimuli on night vision disturbances. The aim of this work is to study the influence of the chromaticity of different visual stimuli on night vision disturbances by analyzing straylight and visual discrimination under low-light conditions. For that, we assessed the monocular and binocular visual discrimination of 27 subjects under low illumination using the Halo test. The subjects' visual discrimination was assessed after exposure to different visual stimuli: achromatic, red, green, and blue, both at the monitor's maximum luminance and maintaining the same luminance value for the different visual stimuli. Monocular straylight was also measured for an achromatic, red, green, and blue stimuli. The blue stimulus had the greatest effect on halos in both monocular and binocular conditions. Visual discrimination was similar for the red, green, and achromatic stimuli, but worsened at lower luminance. The greatest influence of straylight was observed for the blue stimulus. In addition, visual discrimination correlated with straylight measurements for achromatic stimuli, wherein greater straylight values correlated with an increased perception of halos and other visual disturbances.


Photic Stimulation , Humans , Male , Female , Adult , Night Vision/physiology , Young Adult , Light , Vision, Binocular/physiology , Visual Perception/physiology , Color Perception/physiology , Vision Disorders/physiopathology , Lighting , Middle Aged
15.
Nature ; 629(8010): 98-104, 2024 May.
Article En | MEDLINE | ID: mdl-38693411

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Amino Acids , Biocatalysis , Oxidative Coupling , Photochemical Processes , Amino Acids/biosynthesis , Amino Acids/chemistry , Amino Acids/metabolism , Biocatalysis/radiation effects , Directed Molecular Evolution , Free Radicals/chemistry , Free Radicals/metabolism , Glycine/chemistry , Glycine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/chemistry , Indicators and Reagents , Light , Oxidative Coupling/radiation effects , Pyridoxal Phosphate/metabolism , Stereoisomerism , Amino Acids, Branched-Chain/chemistry , Amino Acids, Branched-Chain/metabolism
16.
Harmful Algae ; 134: 102622, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705618

Colony formation is a crucial characteristic of Microcystis, a cyanobacterium known for causing cyanobacterial harmful algal blooms (cyanoHABs). It has been observed that as Microcystis colonies grow larger, they often become less densely packed, which correlates with a decrease in light penetration. The objective of this study was to investigate the effects of light limitation on the morphological variations in Microcystis, particularly in relation to the crowded cellular environment. The results indicated that when there was sufficient light (transmittance = 100 %) to support a growth rate of 0.11±0.01 day-1, a significant increase in colony size was found, from 466±15 µm to 1030±111 µm. However, under light limitation (transmittance = 50 % - 1 %) where the growth rate was lower than 0, there was no significant improvement in colony size. Microcystis in the light limitation groups exhibited a loose cell arrangement and even the presence of holes or pores within the colony, confirming the negative correlation between colony size and cell arrangement. This pattern is driven by regional differences in growth within the colony, as internal cells have a significantly lower frequency of division compared to peripheral cells, due to intra-colony self-shading (ICSS). The research demonstrates that Microcystis can adjust its cell arrangement to avoid excessive self-shading, which has implications for predicting and controlling cyanoHABs. These findings also contribute to the understanding of cyanobacterial variations and can potentially inform future research on the diverse phycosphere.


Harmful Algal Bloom , Light , Microcystis , Microcystis/physiology , Microcystis/growth & development
17.
Physiol Plant ; 176(3): e14327, 2024.
Article En | MEDLINE | ID: mdl-38716559

Our goal was to determine whether anthocyanin-producing species (red) use different photoprotective strategies to cope with excess light during fall senescence compared with non-anthocyanin-producing species (yellow). In a previous study, we found that a yellow species retained the photoprotective PsbS protein in late autumn, while a red species did not. Specifically, we tested the hypothesis that red species make less use of zeaxanthin and PsbS-mediated thermal dissipation, as they rely on anthocyanins for photoprotection. We monitored four red (Acer ginnala, Rhus typhnia, Parenthocissus quinquefolia, Viburnum dentatum) and four yellow species (Acer negundo, Ostrya virginiana, Vitis riparia, Zanthoxylum americanum) throughout autumn senescence and analyzed pigments, protein content, and chlorophyll fluorescence. We found yellow species retained the PsbS protein at higher levels, and had higher dark retention of zeaxanthin in late autumn relative to red species. All species retained lutein and the pool of xanthophyll cycle pigments in higher amounts than other carotenoids in late autumn. Our data support the hypothesis that red species use anthocyanins as a photoprotective strategy during autumn senescence, and therefore make less use of PsbS and zeaxanthin-mediated thermal dissipation. We also found species-specific variation in the particular combination of photoprotective strategies used.


Anthocyanins , Chlorophyll , Plant Leaves , Seasons , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/physiology , Anthocyanins/metabolism , Chlorophyll/metabolism , Plant Senescence , Zeaxanthins/metabolism , Carotenoids/metabolism , Light , Plant Proteins/metabolism , Xanthophylls/metabolism
18.
Arq Bras Oftalmol ; 87(3): e20230257, 2024.
Article En | MEDLINE | ID: mdl-38716966

PURPOSE: This review emphasizes the effect of light on visual efficiency, the impact of different lighting focuses, types of lighting, and their influence on vision and productivity. Light sources and standards are intriguing subjects for ophthalmologists. Guidelines regarding the level of lighting influence on visual activities can enhance visual performance.Methods: This article was developed based on literature reviews, with a bibliographic survey conducted in databases such as PubMed, MEDLINE, Web of Science, Embase, LILACS, and SciELO. RESULTS: Provides recommendations for understanding information regarding the influence of lighting on visual performance. CONCLUSION: Proper workplace lighting is crucial for improving visual efficiency, safety, productivity, and worker health. Efficient workplace lighting should avoid light sources directed towards the worker's face, prevent harmful glare, be more intense in the work area, and uniform in the rest of the room. Ophthalmologists should be knowledgeable about and provide guidance on correct lighting to ensure patient comfort and satisfaction with visual correction.


Lighting , Humans , Vision, Ocular/physiology , Visual Acuity/physiology , Workplace , Occupational Health , Glare , Light
19.
Plant Signal Behav ; 19(1): 2348917, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38704856

Plants can activate protective and defense mechanisms under biotic and abiotic stresses. Their roots naturally grow in the soil, but when they encounter sunlight in the top-soil layers, they may move away from the light source to seek darkness. Here we investigate the skototropic behavior of roots, which promotes their fitness and survival. Glutamate-like receptors (GLRs) of plants play roles in sensing and responding to signals, but their role in root skototropism is not yet understood. Light-induced tropisms are known to be affected by auxin distribution, mainly determined by auxin efflux proteins (PIN proteins) at the root tip. However, the role of PIN proteins in root skototropism has not been investigated yet. To better understand root skototropism and its connection to the distance between roots and light, we established five distance settings between seedlings and darkness to investigate the variations in root bending tendencies. We compared differences in root skototropic behavior across different expression lines of Arabidopsis thaliana seedlings (atglr3.7 ko, AtGLR3.7 OE, and pin2 knockout) to comprehend their functions. Our research shows that as the distance between roots and darkness increases, the root's positive skototropism noticeably weakens. Our findings highlight the involvement of GLR3.7 and PIN2 in root skototropism.


Arabidopsis Proteins , Arabidopsis , Plant Roots , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Plant Roots/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Darkness , Light , Seedlings/metabolism , Indoleacetic Acids/metabolism
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230110, 2024 Jun 24.
Article En | MEDLINE | ID: mdl-38705184

Night-time light can have profound ecological effects, even when the source is natural moonlight. The impacts of light can, however, vary substantially by taxon, habitat and geographical region. We used a custom machine learning model built with the Python package Koogu to investigate the in situ effects of moonlight on the calling activity of neotropical forest katydids over multiple years. We prioritised species with calls that were commonly detected in human annotated data, enabling us to evaluate model performance. We focused on eight species of katydids that the model identified with high precision (generally greater than 0.90) and moderate-to-high recall (minimum 0.35), ensuring that detections were generally correct and that many calls were detected. These results suggest that moonlight has modest effects on the amount of calling, with the magnitude and direction of effect varying by species: half of the species showed positive effects of light and half showed negative. These findings emphasize the importance of understanding natural history for anticipating how biological communities respond to moonlight. The methods applied in this project highlight the emerging opportunities for evaluating large quantities of data with machine learning models to address ecological questions over space and time. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Forests , Machine Learning , Vocalization, Animal , Animals , Light
...